Regresion Lineal Simple
Econometria

Camilo Vargas Walteros

1. Modelo de regresion

1.1 Lineal y simple




Lineal y simple

* Una “regresion” busca explicar los cambios de

una varia

ble (Y) que son generados por los

cambios de otras variables (Xs).

« “Y” es una variable “estocastica” porque esta
asociada a una distribucion de probabilidad.

e Las “Xs” son variables “deterministicas”.

Nombres para "Y" Nombres para "X"

Dependiente Independiente
Regresando Regresor
Variable consecuencia| Variable casual
Variable explicada | Variable explicativa

e  FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 28, Box 2.1

Lineal y simple

» Ejemplos de modelos deterministicos:
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Lineal y simple

La “correlacion” muestra el grado de
“asociacion lineal” entre dos variables sin
realizar distincion entre las variables.

En una “regresion” nos interesa conocer el valor
“promedio” de una variable “dependiente”
dados valores fijos de otras variables.

Antes de iniciar el analisis de regresion es util
graficar la relacion entre las variables.

;Existe algun tipo de relacion entre las
variables?, ;Es una relacion lineal?, ;Cuanto es su
intercepto y pendiente?

Lineal y simple

Ingreso familiar (X) y Consumo familiar (Y)

T~ X—
Y 80 100 120 140 160 180 200 220 240 260
b
Consumo familiar 55 65 79 80 102 110 120 135 137 150
semanal ¥, $ 60 70 84 93 107 115 136 137 145 152
65 74 20 95 110 120 140 140 155 175
70 80 94 103 116 130 144 152 165 178
75 85 98 108 118 135 145 157 175 180
— 88 — 113 125 140 — 160 189 185
— — = 115 — = — 162 - 191
Total 325 462 445 707 678 750 685 1043 966 1211
Media condicional 65 77 89 101 113 125 137 149 161 173
de ¥, E(Y|X)

FUENTE: Gujarati (2010), Econometria, P 35, Tabla 2.1

Realiza una grdfica colocando el ingreso familiar en el eje horizontal, el
consumo familiar y su media condicional en el eje vertical.

Traza una linea uniendo todas las medias condicionales.




Lineal y simple

Ingreso familiar (X) y Consumo familiar (Y)
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Ingreso semanal, $
e (Qué problemas
«  FUENTE: Gujarati (2010), Econometria, P 35, Figura 2.1 presenta esta regresién_?

Lineal y simple

Problema 1: Lo que no dice la media

0 Moda Mediana Media Salario -»

e FUENTE:
https://ssociologos.com/2014/05/13/la-omnipresente-media-estadistica-que-nos-dice-y-que-nos-oculta/




Lineal y simple

Problema 2: Endogeneidad

¢Existe endogeneidad entre las horas de estudio y el rendimiento académico?

FUENTE: www.lasexta.com/tecnologia-tecnoxplora/ciencia/ descubrimientos/que-fue-antes-el-huevo-
0-la-gallina _201809105b98ff200cf2e982a160a5b7.html

Lineal y simple

» Se busca calcular el valor esperado de Y
condicional a un valor de “X”:

E(r|x)= r(x,)
« Asumiendo una forma lineal en los parametros y
en la variable independiente:

E(Y‘Xi)zﬂl + 0, X,

« El “modelo de regresion” adquiere su nombre de
“lineal” porque debe ser lineal en los
parametros.




Lineal y simple

» Relaciones no lineales entre variables se pueden
expresar mediante un modelo de regresion lineal:

g, = AL"e"

Ln(qz' ) = Ln(A)+ :Ban(Li )"’ u;
Y; ::Bl +:82Xi TU;

[{ P

« El “modelo de regresion” es “simple” porque
unicamente depende de una variable
independiente y tiene una pendiente.

”

Lineal y simple
Funciones lineales en los parametros

Y Y

Cuadratica Exponencial

Y =B+ B X + B3 X7 Y = efrebaX

X X

/\_/ + ;Cudles de los modelos
anteriores son lineales?

Cubica

+ ¢Son modelos simples?
Y=pi+p2X+ 53X2 + .84X3

X
FUENTE: Gujarati (2010), Econometria, P 39, Figura 2.3




1. Modelo de regresion

1.2 Minimos Cuadrados Ordinarios

Minimos Cuadrados Ordinarios
Lineas de regresion muestral y poblacional

sueldo

Salary = 963.191 + 18.501 roe

——
———
—_—
——
—
—
—
-
o

,,,,,,, E(salarylroe) = B, + B,roe

963.191

roe

e FUENTE: Wooldridge (2010), Introduccién a la Econometria, P 34, Figura 2.5




Minimos Cuadrados Ordinarios

Se busca estimar la siguiente regresion
(muestral):

Yi =:Bl+:82 Xi

Donde () vy (3,) son los estimadores.

El objetivo es obtener una linea que mejor
represente los datos a partir de los estimadores.

El termino (v) representa la “prediccion” de la
variable dependiente dado un valor de la variable
independiente (x,).

Minimos Cuadrados Ordinarios

Linea de mejor ajuste, dato observado y estimado
Yy

a,= residual . =B+ Bx
/
l ¥, = valor ajustado
W
%
X, X; X

e FUENTE: Wooldridge (2010), Introduccién a la Econometria, P 31, Figura 2.4




Minimos Cuadrados Ordinarios

* Los estimadores pueden calcularse por varios
métodos que buscan minimizar lo siguiente:

N A\

u,-=Y—Y.

l 1

+ Esta distancia se define como la diferencia
entre el valor de la variable dependiente (y) y
la prediccion del modelo ( Y,)

» Esta resta también muestra los “residuos” para
cada uno de los datos de la regresion.

Minimos Cuadrados Ordinarios

;Por qué se debe incluir el termino del error?

« Error de medicion en las variables: encuestas
poblacionales (ingreso y distancia al hogar).

« Error de especificacion (forma lineal o no lineal).

* En las ciencias sociales los experimentos no son
controlados (el PIB no lo decide el investigador).

« Modelo mas simple (guardar variables
irrelevantes en el término del error).

» Variables no observables (creencia).
« Variables omitidas (vacios en la teoria).
» Variables representativas inadecuadas (proxy).




Minimos Cuadrados Ordinarios

» Por ejemplo, al tener 3 pares de datos para una
variable X y una variable Y, se generan 3
pronosticos y 3 residuos:

Y =p0+5 X - ur=1 -

N 7AN AN

Yz:ﬂf"ﬂzXz » u2=Y2_Yz

>

Y3=181+182X3 » us =1, -1,

Minimos Cuadrados Ordinarios

El objetivo consiste en “minimizar la suma de

los errores” por medio de varias formas (Ver
Kennedy 2008, P 13):

() | XY,

Mm.;(3]—; 3

3 3 A

Min: ) u,| =), -,
i=1 i=1
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Minimos Cuadrados Ordinarios

« El método mas utilizado para minimizar los
errores consiste en realizar una suma cuadratica:

3
2 2 2 2 ;
— » ¢(Por qué se elevan los
ul fuy +u; =Y ul

errores al cuadrado?

i=1
3 A 2 3 A A 2
Z[K_K) :Z K_l:ﬂl+ﬁ2Xi:|
i=1 i=1
3 A A 2
Min Y-p—-0,X
8.5, lz_;( i 1 2 lj

Minimos Cuadrados Ordinarios

Minimizando la distancia cuadratica (MCO)

10
8 -
6 -
« ¢(De dénde vienen

4 estos cuadrados?
2 -
0 T

0 1 2 3 4 5 6 7

e FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 32, Figure 2.3




131 :)_’—182}
A _ZXiYi_n}}_, m = Yz_Yl
SO X? X X, - X,

Minimos Cuadrados Ordinarios

(Y) es el peso en
libras y (X) la estatura
en pulgadas.

Encuentra el valor de
los estimadores.

Grafica la regresion.

Calcula el Y estimado,
los errores y la suma
de los errores al
cuadrado utilizando la
informacion de la
tabla.

Peso (Y) Estatura (X)

132 68
108 64
102 62
115 65
128 66

e FUENTE: Anderson (2008), Estadistica
para Economia y Administracion, P 553.
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1. Modelo de regresion lineal

1.3 Clasico

*  FUENTE: http://es.wikipedia.org/wiki/ Arist%C3%B3teles

Modelo clasico

* Los estimadores fueron calculados por (MCO) a
partir de una “muestra”.

« El modelo de regresion se puede utilizar para
obtener conclusiones de toda la “poblacion”.

« Se realizaran supuestos sobre la forma en como
se genera las variables independientes (X) y el
término del error (u).

» Estos supuestos fueron empleados por primera
vez por Gauss en 1821 y desde ese entonces el
modelo se considera un “clasico”.

13



Modelo clasico

Supuesto 1: Modelo de regresion lineal

« El modelo de regresion es lineal en los
parametros.

Y, =0+ 5, X, +u,

Supuesto 2: Independencia entre las variables
independientes y el término del error

COV(Xl.,ul.)ZO ZuiXi =0
i=1

 Las variables independientes se encuentran
“predeterminadas”.

* No existe “covarianza” entre \variables
observadas y variables no observadas.

* No se presenta “sesgo de seleccion” (distancia
al tablero y rendimiento).

* No tenemos “endogeneidad”.

 El cumplimiento de este supuesto permite la
estimacion de los betas por el “Método
Generalizado de Momentos”.

« En la practica el cumplimiento de este supuesto
permite desarrollar ejercicios de “evaluacion de
impacto” (grupo de control y tratamiento).

14



Modelo Clasico

Grupo de control y tratamiento (los efectos de Transmi)

a0

Afraco Residencias

70 A
&0 o
20 4
40
30 4
20 1
10 4

Jul-99
Ene-00

Abr-99
Oct-99 7

FUENTE: Moreno (2005), Los efectos de Transmilenio en el crimen de la avenida Caracas y sus

vecindades, Grafico 1, P11

Abr-00 7

Jul-00
Cct-00 7
Ene-01

Jul-01
Cct-01 7
Ene-02 7

Abr-01

Abr-02

Jul-02 7
Cet-02 7

Bogota

Reqion Caracas

[

cov(Xl.,ul.)zo

u.
t

¥ positivo, pero
cerca de cero

¥ negativo, pero
cerca de cero

FUENTE: Gujarati (2010), Econometria, P 78, Figura 3.10 (*)
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i=l1 * Bajo el supuesto de independencia.

Modelo clasico

Supuesto 3: Errores estacionarios

| t | t

Stationary series MNon-5tationary series

¢;Como se comporta la media y la varianza en cada serie?

FUENTE: https://estrategiastrading.com/series-estacionarias/

16



Modelo clasico

Supuesto 3.1: Valor Esperado del error es cero
» La media del error es constante e igual a cero.

L * Realiza la suma de los
E(u ) = O E u. = O errores para el ejemplo
l l
i=1

del peso y la estatura.

Supuesto 3.2: Errores homoscedasticos
» La varianza de los errores es constante.

2
var(u,)= o
2
E(ul):O var(u, )= o
Y
(®) Media

FRP: Y, = ﬁl + ﬁZXJ
I ! I I X

X X X X

FUENTE: Gujarati (2010), Econometria, P 63, Figura 3.3
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flwageleduc)

wage

3 - -~ E(wageleduc) =
12 -~ B, + B,educ

educ

FUENTE: Wooldridge (2010), Introduccién a la Econometria, P 55, Figura 2.9

Modelo clasico

Supuesto 4: No auto correlacion de los errores

« No existe algun tipo de relacion entre las
variables no consideradas en el modelo.

cov(ui,uj)=0

Supuesto 5: El numero de observaciones debe ser
mayor al numero de estimadores

* No existe multicolinealidad perfecta.

n>k




=
i

+i, i,
i i

+ =i
i i

a) b)

il LY )
— - .
u; o _%ale o H

—t;

c)

e  FUENTE: Gujarati (2010), Econometria, P 67, Figura 3.6

cov(ui,uj):o

e ;Cudl de las

graficas cumple el
supuesto de no
autocorrelacién?

1. Modelo de regresion lineal

1.4 Propiedades de los estimadores

19



Propiedades de los estimadores

Propiedades de los estimadores

Cuando se cumplen los supuestos del modelo los
estimadores por MCO:

« Son “insesgados” porque en promedio los
estimadores representan los verdaderos valores
poblaciones (sin importar el tamano de la
muestra). Esto se cumple debido al supuesto 3.

« Son “lineales” en el sentido que sus formulas son
combinaciones lineales de variables aleatorias.

* Son los “mejores” entre todos los estimadores
lineales dado que tienen la menor varianza.

e ¢;Cual estimador es

e (Cudl estimador tiene

Propiedades de los estimadores

Ho)-0 (Q)E”(eﬂ

[(63)

f(6y)
insesgado?

minima varianza?

6 E(f3)
e FUENTE: Gujarati (2010), Econometria, P 827, Figura A.9
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Propiedades de los estimadores

Cuando se cumplen los supuestos del modelo el
estimador por MCO se conoce por el nombre
“MELI” es decir el “Mejor Estimador
Linealmente Insesgado”.

Cuando la muestra es muy grande el estimador
no tienen sesgo y su varianza es cero por lo cual
es “consistente”.

La consistencia permite utilizar los estimadores
porque estos convergen en probabilidad a sus
contrapartes poblacionales.

El “teorema de Gauss Markov” garantiza que los
estimadores por MCO sean eficientes.

Propiedades de los estimadores

Consistencia
_— f(6)n=100

Pr Lim(é’) =0
/f(§)11=80 n—»00

/f(é)ﬂ:SO

/f(é) n=25

Densidad de probabilidad

2]
e FUENTE: Gujarati (2010), Econometria, P 829, Figura A.11
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Propiedades de los estimadores

Un ejemplo de la propiedad de “consistencia” se
puede aplicar a la publicacion de los boletines
electorales (referendo Colombia 2016, Si = 1):

*+ N=1.300.734 (15,19%). Promedio = 0,5111
« N=3.228.870 (31,23%). Promedio = 0,5027
* N=5.772.382 (50,13%). Promedio = 0,5009
* N =28.421.244 (68,85%). Promedio = 0,5005
* N =10.470.544 (83,08%). Promedio = 0,5000
« N=11.598.295 (90,66%). Promedio = 0,4989
+ N=12.808.858 (99,98%). Promedio = 0,4978

e FUENTE: www.plebiscito.registraduria.gov.co

1. Modelo de regresion lineal

1.5 Precision de los estimadores

22



Precision de los estimadores

Precision de los estimadores por MCO

« En una poblacion se pueden obtener diferentes
muestras y como consecuencia estimadores
distintos (edad de estudiantes).

;Qué tan precisos son los estimadores utilizados?

;Cual es el grado de variabilidad de los estimadores
al emplear muestras diferentes?

« Para responder estas preguntas es necesario
calcular los errores estandar (EE) de los
estimadores.

Precision de los estimadores

Precision de los estimadores por MCO

* Cuando se cumple el “supuesto 3” del modelo la
varianza de los errores estimados es:

o[22,
n i

« Este parametro es insesgado cuando:

o

23



Precision de los estimadores

Precision de los estimadores por MCO

3=J(n12)225

() es el error estandar de la regresion (EER).

“EER” también se puede interpretar como la
“desviacion” estandar de la regresion.

Entre menor sea “EER” mas alta es la precision
de la regresion.

Precision de los estimadores

Precision de los estimadores por MCO

A )= \/ ng%f})z -0 \/ : Zg)in}

| " 1

WO 5o e

24



Precision de los estimadores

La pendiente y datos cercanos de la media

¥y

0 X x

e FUENTE: Brooks (2014), Introductory Econometrics for Finance, P 95, Figure 3.7

Precision de los estimadores

La pendiente y datos alejados de la media

¥

=

0

X

e FUENTE: Brooks (2014), Introductory Econometrics for Finance, P 96, Figure 3.8

25



Precision de los estimadores
El intercepto y datos con suma X"2 grande

¥

0 x

e FUENTE: Brooks (2014), Introductory Econometrics for Finance, P 96, Figure 3.9

Precision de los estimadores

El intercepto y datos con suma X"2 pequena

¥

0 x

e FUENTE: Brooks (2014), Introductory Econometrics for Finance, P 97, Figure 3.10
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1. Modelo de regresion lineal

1.6 Precision del modelo

Precision del modelo
Suma Total de Cuadrados (SCT)

60 —

scr=Y(v,-¥f

20 —

0 l l l T T v X
10 20 30 40 50

e FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 29, Figure 2.1 (adaptada con colores).
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Precision del modelo
Suma Explicada de Cuadrados (SCE)

y Linea de regresion
Fy .
100 -
[ ] ®
80 t
A/ [
60 —|
[ ] A J— 2
40 — _
SCE=Y|Y-Y
20 —
T T T T T >
10 20 30 40 50 ’

FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 29, Figure 2.1 (adaptada con colores).

Precision del modelo
Suma de Residuos al Cuadrado (SCR)

¥

Linea de regresion
r

100 —

80

60 —|
2
A
40
Y, -¥,
20

A4

l l l T T
10 20 30 40 50

FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 29, Figure 2.1 (adaptada con colores).
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Precision del modelo

Medidas de bondad de ajuste (R cuadrado)

« Las variaciones de la muestra se generan de dos
fuentes, la “suma explicada de cuadrados” (SCE)
y la “suma de los residuos al cuadrado” (SCR):

:(ﬁl"":éz Xij_i_l’/t\i

>

2~
[l
N>
+
N

~.

>

-~
|
~
[l
N>
|
~
+
<

~.

S 0-7F =3[ 7-7) 5[ n-1)
SCT =SCE + SCR
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Precision del modelo

Medidas de bondad de ajuste (R cuadrado)

SCT = SCE + SCR

SCT SCE SCR
SCT SCT SCT

SCE SCR
SCT SCT

Precision del modelo

Medidas de bondad de ajuste (R cuadrado)

SCR SCE
SCT  SCT

« El R cuadrado mide el porcentaje de variacion en
“Y” explicada por las variaciones en “X”.

« También se conoce como el “coeficiente de
determinacion” (no confundir con el coeficiente
de correlacion).

« La minimizacion de la suma de los errores al
cuadrado implica la maximizacion del R cuadrado.

R =1-

30



Precision del modelo

R =0 . A
demonstrated by a SCE = Z(Yz_ Yj =0
flat estimated line,

i.e. a zero slope
coefficient

A 4

FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 109, Figure 3.1 (editada)

Precision del modelo

R? = 1 when all data
points lie exactly on
the estimated line

2
SCR:Z();—)@) =0

v

FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 109, Figure 3.2 (editada)
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Precision del modelo

RGN Peso(Y)  Esiatura (X) |
, Peso (Y Estatura (X
estandar de |la () (X)

regresion, los 132 68
errores estandar 108 64
de los 102 62
estimadores, la 115 65
SCT, la SCE, la SCR 128 56

y el R cuadrado.

e FUENTE: Anderson (2008), Estadistica
para Economia y Administracién, P 553.

2. Inferencia Estadistica

2.1 Pruebas de Hipotesis




Pruebas de Hipotesis

» ;Los estimadores obtenidos por MCO reflejan el
verdadero valor de los parametros
poblacionales?

 Por ejemplo, si beta es igual 0,2; El beta
poblacional en promedio también es igual a 0,2?
« Las pruebas de hipotesis evaluan estas

afirmaciones asumiendo una “distribucion de
probabilidad” para los residuos.

« El modelo de regresion es “normal” porque se
asume que los residuos siguen esa distribucion.

Pruebas de Hipotesis

;Por qué se asume la normalidad en los errores?

« Al aumentar el tamano de muestra y sin importar
el tipo de distribucion que asuman las variables
incluidas en el error estas siguen la normal.

* Lo anterior se cumple inclusive si el tamano de
muestra no es grande o las variables no son
independientes (en algunos casos).

« Permite realizar pruebas de hipotesis con otras
distribuciones (t-student, chi-cuadrado y F).

« Es importante realizar pruebas de hipotesis
verificando la distribucion normal de los errores.

33



Pruebas de Hipotesis
u; ~ N(O, 62)

Cuando los errores siguen la distribucion normal
entonces los estimadores por MCO también
siguen esta distribucion.

Bajo este supuesto los estimadores por MCO son
los Mejores Estimadores Insesgados “MEI” (entre
los estimadores lineales y no lineales).

Este resultado es mas potente que el “Teorema
de Gauss Markov”.

Pruebas de Hipotesis

Cuando los errores siguen la distribucion normal
entonces los estimadores por MCO también
siguen esta distribucion:

A

élNN(ﬂlao'zAj ﬁzNN(ﬂzao'zA)
ﬁl ﬂz

Las variable normal estandar se puede construir
a partir de estos estimadores al restar la media y
dividir por la desviacion estandar:
BB oy Pmbr  y(oy)
c. o,

b B2

34



Pruebas de Hipotesis

« Dado que en la practica es dificil encontrar la
varianza poblacional se utiliza la “distribucion
t”, asumiendo que el error estandar es un buen
estimador de la desviacion estandar:

ﬁl_ﬂl ~ IB/\z_ﬂz

n-2 ~N ls
ee( /Ai’l j ee( 5, )

« Las pruebas de hipotesis se pueden realizar bajo
el enfoque del “test de significancia” o
“intervalos de confianza”.

Pruebas de Hipotesis

Pruebas de hipotesis
« Hipotesis Nula:

H,: =02
« Hipotesis Alternativa:
H :p5+#0,2

* En este caso se utiliza una prueba de dos colas
dado que se tienen dos posibilidades:

<02 £>0,2
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Pruebas de Hipotesis

Regiones de rechazo al 5% con dos colas

1)
A

H :p5+#0,2

2.5%
rejection region

/

2.5%
rejection region

05% non-rejection region

e FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 57, Figure 2.13 (editada)

Pruebas de Hipotesis

Pruebas de hipotesis
« Hipotesis Nula:

H,: =02
« Hipotesis Alternativa:
H :£>0,2

 En este caso se utiliza una prueba de una cola
dado que se tiene una posibilidad.
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Pruebas de Hipotesis

Region de rechazo al 5% con una cola

J(x)

s

H, :£>0,2

5%

o i -
95% non-rejection region rejection region

e FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 57, Figure 2.15 (editada)

Pruebas de Hipotesis

Pruebas de hipotesis

Hipotesis Nula:

H,: =02
Hipotesis Alternativa:
H, :[<0,2

En este caso se utiliza una prueba de una cola
dado que se tiene una posibilidad.
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Pruebas de Hipotesis

Region de rechazo al 5% con una cola

f(x)
4

H, :p<0,2

5%

- . 95% non-rejection region
rejection region

X

e FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 57, Figure 2.13 (editada)

2. Inferencia Estadistica

2.2 Test de significancia e
Intervalos de Confianza

38



Test de significancia e
Intervalos de Confianza

Test de significancia (pasos)

. Estime los estimadores y sus errores estandar.

. Calcule el valor del estadistico (observado).

. Utilice una tabla de distribucion del estadistico.
. Seleccione un nivel de significancia.

. Determine las regiones de rechazo.

. Encuentre el valor critico del estadistico.

7. Si el valor del estadistico es mayor o inferior a
los valores criticos del estadistico rechace la
hipotesis nula en caso contrario no rechace.

o FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 56, Box 2.5

o Ul A WIN =

Test de significancia e
Intervalos de Confianza

Intervalos de confianza (pasos)

. Estime los estimadores y sus errores estandar.

. Seleccione un nivel de significancia.

. Utilice una tabla de distribucion del estadistico.
. Encuentre el valor critico del estadistico.

. Determine el intervalo de confianza.

6. Si el valor del estimador bajo la hipotesis nula se
encuentra por fuera del intervalo rechace la
hipotesis nula en caso contrario no rechace.

Ul A W N =

e FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 60, Box 2.6
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Test de significancia e
Intervalos de Confianza

Equivalencia entre las pruebas

« Las conclusiones obtenidas por la prueba de
significancia y los intervalos de confianza son
equivalentes.

« Bajo el test de significancia la hipotesis nula no
se rechaza si el estadistico se encuentra dentro
de la region de no rechazo:

el )it )
it 1. )< 21,0 1.,
vt 5. )2 A2 1, )1
v ) e

« Esta ultima expresion es el area de no rechazo de la
hipétesis nula utilizando un intervalo de confianza.
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2. Inferencia Estadistica

2.3 Ejemplos

Ejemplo 1

Dada la siguiente regresion (Brooks 2008, P 60):
Y, =20,3+0,5091 X, n=22

(14,38)  (0,2561)
- Hipotesis Nula: H, : , =0
» Hipotesis alternativa: H1 ;ﬂz -0

» Nivel de significancia = 10%
» Grados de libertad = 20

» ¢Es una prueba de una cola o dos colas?, ;Cudnto es el “t critico”?
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Ejemplo 1

YA
H :pB,>0
H,:5,=0
H, :B,<0
X
Y, =0+ 54X,
Ejemplo 1

Test de significancia

BB, 0,5091-0
obs AN\
ee( ﬂ2j 0,2561

Rechaza la hipotesis nula con un nivel de
significancia del 10% (1,988 es superior a 1,725).

t

=1,988
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Ejemplo 1
Valores criticos y regiones de rechazo con dos colas

(distribucion t)
' 3

5%

rejection region

5%

90% non-rejection region - .
rejection region

~1,725 1,7251,98 ¢

o FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 57, Figure 2.13 (editada)

Ejemplo 1

B-B, 05091-0

obs AN\ o
ed B, 0,2561

{

M

tro100% = £1,725 « Rechaza la hipétesis nula

(la variable es estadisticamente significativa)

fro.50 = £2,086 « No rechaza la hipotesis nula

Lyoq0 = +2.845 - Norechaza la hipotesis nula
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Ejemplo 1

Intervalo de confianza

:%2 - tcrtee(ﬂ/;j <p, < ﬂ/\Z + tcrtee(lg2j

0,5091—(1,725)0,2561)< 3, < 0,5091+(1,725)0,2561)

0,06733< 3, <0,9508

 Rechaza la hipotesis nula con un nivel de
significancia del 10% ( 5,=0 no se encuentra
dentro de ese intervalo.)

Ejemplo 2

Dada la siguiente regresion (Gujarati 2010, P 79):
» X = nivel de escolaridad, Y = salario.

Y. =-0,0144+0,7241 X, n=13

(0,8746) (0,069)

» Hipétesis Nula: H, : o> =0,6
* Hipotesis alternativa: /, co” £ 0,6

» Nivel de significancia = 5%
* Grados de libertad = 11
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Ejemplo 2
Valores criticos y regiones de rechazo con dos colas
Prueba Chi-cuadrado

) o
2 _
Zobs - (n -2 2
O
E 2 2
'_'E ~
z Xcrr = Xn-2.a/2
= 2.5% 95% 259 ¢ Calcula el estadistico
'ﬁ,l / observado.
\ / . ¢Se rechaza la
/ hipétesis nula?
22
3.8157 21.9200
23_975 xé_ozs /\2
e FUENTE: Gujarati (2010), Econometria, P 112, Figura 5.1 O = 0,881 1
Ejemplo 2
Intervalo de confianza
A A
2 2
o 5 o}
(n-2 : <o’<(n-2 5
Xn-2.a/2 Xn-21~(a/2)

(11 0,8811 SO_QS(H 0,8811
21,92 3,8157
0,4422<0” <2,54
* No rechaza la hipotesis nula con un nivel de

significancia del 5% (o? =0,6 se encuentra dentro
de ese intervalo.)
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2. Inferencia Estadistica

2.4 Nivel de significancia

Nivel de significancia

No rechazar una hipotesis nula no implica
aceptar la hipotesis nula porque en realidad
cualquier otra hipotesis nula pudo haber sido
aceptada (ejemplo de veredicto en juzgados).

La hipotesis nula mas utilizada en el analisis de
regresion es (H,:4,=0) la cual busca establecer
si existe una relacion lineal entre la variable
dependiente (Y) y la variable independiente (X).

Cuando los grados de libertad con superiores a
20, el nivel de significancia es del 5% y el
estadistico “t” es superior a “2” rechace la
hipétesis nula (regla del 2).
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Nivel de significancia

La formulacion de la hipotesis nula también
depende del marco tedrico existente (Gujarati
2010, P 121).

El “valor p” encuentra el nivel de
significancia mas bajo para rechazar la
hipotesis nula.

A medida que se incrementa el estadistico
observado se reduce el valor p y se rechaza
la hipdtesis nula con mayor confianza
(Gujarati 2010, P 122).

Los programas estadisticos muestran el valor
del estadistico y el valor p.

Nivel de significancia

Valores criticos y regiones de rechazo con dos colas

(distribucion t)
' 3

5%
rejection region

5%

90% non-rejection region - :
rejection region

~1,725 1,7251,98 ¢

e FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 57, Figure 2.13 (editada)
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Nivel de significancia

Rechazo de la hipotesis nula

A

=+DISTR.T.CD(1,98;20)
0,0308

5%

rejection region

5%

90% non-rejection region - :
rejection region

-1,725 1,7251,98 ¢

o FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 57, Figure 2.13 (editada)

Nivel de significancia

« En esta situacion:

Lerr = Uaoa0m = £1,725 » % =5%

_Bh _ 1,988 ™ ValorP =3,08%
ee| 3,

4

obs

» ;Se rechaza la hipétesis nula?, ;Por qué?
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Nivel de significancia

Clasificando los errores y aciertos al realizar pruebas de hipotesis

Reality
Hy is true H, is false
Significant Typelerror =a 4/
Result of test  (reject Hp)
Insignificant N, Type Il error = p
(do not reject Hy)

o FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 64, Table 2.3

Nivel de significancia
Error Tipo | y Error Tipo |l

—

e error Type lierror
R (false negative)

FUENTE: Ellis (2010), The essential guide to effect sizes, P 50, Figure 3.1
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Nivel de significancia

« Existe una disyuntiva entre los tipos de errores
(es mas grave el error tipo ).

« En la practica se fija un valor para el error
tipo | y se busca maximizar la potencia de la
prueba (1-g).

« La Unica forma de reducir los dos tipos de
errores en forma simultanea es utilizar una

muestra mas grande o con mayor varianza
(Brooks 2008, P 65).

3. Analisis de varianza (ANOVA)
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Analisis de varianza (ANOVA)

Medidas de bondad de ajuste (R cuadrado)

« Las variaciones de la muestra se generan de dos
fuentes, la “suma explicada de cuadrados” (SCE)
y la “suma de los residuos al cuadrado” (SCR):

AN

Y, :(:él"':BAz Xi)_i_ui
SCT =SCE + SCR

S0-7F =5 [1-7) + [n-7)

Analisis de varianza (ANOVA)
Tabla ANOVA para regresion simple

Fuente de variacion §C 6L Scp
Debido alaregresion (SCE] |=(+-7) | 1 [g(i-7)

2

Debido alos residuos (SCR) | S | n2 |z/n-2

Suma Total de cuadrados (SCT) = (v -¥F| n-1  [l-rff-

* Encuentra la tabla ANOVA para el ejemplo del peso y la estatura.
e FUENTE: Gujarati (2010), Econometria, P 125, Tabla 5.3
e SC = Suma de Cuadrados.
e GL = Grados de Libertad.
e SCP = Suma de Cuadrados Promedio (SC dividido GL).
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Analisis de varianza (ANOVA)

Tabla ANOVA para regresion simple

Fuente de variacion $C GL SCP
Debido alaregresion (SCE] | 605 605

Debido alos residuos (SCR| | 5 17

Il o | —

Suma Total de cuadrados (SCT) | 656

Analisis de varianza (ANOVA)

Prueba F para regresion simple

Varianza 1 SCE Z( :

obs

B Varianza2  SCR A\ 2
GL Varitanza2 n-2 Z(Yi—Yl)

X

__k _ GL Varianzal _ _ 1 1
X
m

n—2
2 2
(0} O
O scr O scr

* Encuentra el valor del “F obs” para el ejemplo del peso y la estatura.
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Fuente de variacion SC ]l SCP

Debido a la regresion (SCE) 605 1 605
Debido a los residuos (SCR) 51 3 17
Suma Total de cuadrados (SCT) | 656 4
605

F, =—=3556
17

* SCE es 35 veces mayor a la SCR (descontando por
GL), por tanto el modelo tiene alto poder explicativo
(SCE pesa 92% en de la variabilidad de Y).

_ RMn—k)  (09222)(5-2)
obs — (I—szk—l) - (1-0,9222)(2-1)

35,56

Distribucion F
Valor critico y region de rechazo con cola derecha

2 o2
H.O-SCE <1 H, -ZscE 5
0° 2 = - 2
O-SCR O-SCR

5% del area

/ 19 del area
\/\’\
0 10,12 34,11 35,5 F

F =F =F + ¢Se rechaza la hipotesis nula?
CRT Ln-2,a 1.3, « ¢El modelo tiene poder explicativo?

e FUENTE: Gujarati (2010), Econometria, P 880, Tabla D.3 (editada)
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