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Regresión Lineal Simple

Econometría

Camilo Vargas Walteros 

1. Modelo de regresión

1.1 Lineal y simple
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• Una “regresión” busca explicar los cambios de 

una variable (Y) que son generados por los 

cambios de otras variables (Xs).

• “Y” es una variable “estocástica” porque está 

asociada a una distribución de probabilidad. 

• Las “Xs” son variables “determinísticas”.

Lineal y simple

• FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 28, Box 2.1

Nombres para "Y" Nombres para "X"

Dependiente Independiente

Regresando Regresor

Variable consecuencia Variable casual

Variable explicada Variable explicativa

• Ejemplos de modelos determinísticos:
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• La “correlación” muestra el grado de 

“asociación lineal” entre dos variables sin 

realizar distinción entre las variables.

• En una “regresión” nos interesa conocer el valor 

“promedio” de una variable “dependiente” 

dados valores fijos de otras variables.

• Antes de iniciar el análisis de regresión es útil 

graficar la relación entre las variables.

• ¿Existe algún tipo de relación entre las 

variables?, ¿Es una relación lineal?, ¿Cuánto es su 

intercepto y pendiente?

Lineal y simple

Ingreso familiar (X) y Consumo familiar (Y)

Lineal y simple

• FUENTE: Gujarati (2010), Econometría, P 35, Tabla 2.1

• Realiza una gráfica colocando el ingreso familiar en el eje horizontal, el 

consumo familiar y su media condicional en el eje vertical.

• Traza una línea uniendo todas las medias condicionales.
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Ingreso familiar (X) y Consumo familiar (Y)

Lineal y simple

• FUENTE: Gujarati (2010), Econometría, P 35, Figura 2.1

• ¿Qué problemas 

presenta esta regresión?

Problema 1: Lo que no dice la media

Lineal y simple

• FUENTE: 

https://ssociologos.com/2014/05/13/la-omnipresente-media-estadistica-que-nos-dice-y-que-nos-oculta/
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Problema 2: Endogeneidad

Lineal y simple

• FUENTE: www.lasexta.com/tecnologia-tecnoxplora/ciencia/descubrimientos/que-fue-antes-el-huevo-

o-la-gallina_201809105b98ff200cf2e982a160a5b7.html

• ¿Existe endogeneidad entre las horas de estudio y el rendimiento académico?

• Se busca calcular el valor esperado de Y 

condicional a un valor de “X”:

• Asumiendo una forma lineal en los parámetros y 

en la variable independiente:

• El “modelo de regresión” adquiere su nombre de 

“lineal” porque debe ser lineal en los 

parámetros.

Lineal y simple

( ) ( )iXfXYE =

( ) ii XXYE 21  +=
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• Relaciones no lineales entre variables se pueden 

expresar mediante un modelo de regresión lineal:

• El “modelo de regresión” es “simple” porque 

únicamente depende de una variable 

independiente y tiene una pendiente.

Lineal y simple

iu

ii eALq 2=

( ) ( ) ( ) iii uLLnALnqLn ++= 2

iii uXY ++= 21 

Funciones lineales en los parámetros

Lineal y simple

• FUENTE: Gujarati (2010), Econometría, P 39, Figura 2.3

• ¿Cuáles de los modelos 

anteriores son lineales?

• ¿Son modelos simples?
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1. Modelo de regresión

1.2 Mínimos Cuadrados Ordinarios

Líneas de regresión muestral y poblacional

Mínimos Cuadrados Ordinarios

• FUENTE: Wooldridge (2010), Introducción a la Econometría, P 34, Figura 2.5
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• Se busca estimar la siguiente regresión 

(muestral):

• Donde (  ) y (  ) son los estimadores.

• El objetivo es obtener una línea que mejor 

represente los datos a partir de los estimadores.

• El termino ( ) representa la “predicción” de la 

variable dependiente dado un valor de la variable 

independiente (   ).

 

Mínimos Cuadrados Ordinarios
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Línea de mejor ajuste, dato observado y estimado   

Mínimos Cuadrados Ordinarios

• FUENTE: Wooldridge (2010), Introducción a la Econometría, P 31, Figura 2.4
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• Los estimadores pueden calcularse por varios 

métodos que buscan minimizar lo siguiente:

• Esta distancia se define como la diferencia 

entre el valor de la variable dependiente (  ) y 

la predicción del modelo (   ). 

• Esta resta también muestra los “residuos” para 

cada uno de los datos de la regresión.

Mínimos Cuadrados Ordinarios

iY

iY




−= iii YYu

Mínimos Cuadrados Ordinarios

¿Por qué se debe incluir el termino del error?

• Error de medición en las variables: encuestas 

poblacionales (ingreso y distancia al hogar).

• Error de especificación (forma lineal o no lineal).

• En las ciencias sociales los experimentos no son 

controlados (el PIB no lo decide el investigador).

• Modelo más simple (guardar variables 

irrelevantes en el término del error).

• Variables no observables (creencia).

• Variables omitidas (vacíos en la teoría).

• Variables representativas inadecuadas (proxy).
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• Por ejemplo, al tener 3 pares de datos para una 

variable X y una variable Y, se generan 3 

pronósticos y 3 residuos: 

Mínimos Cuadrados Ordinarios
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• El objetivo consiste en “minimizar la suma de 

los errores” por medio de varias formas (Ver 

Kennedy 2008, P 13):

Mínimos Cuadrados Ordinarios
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• El método más utilizado para minimizar los 

errores consiste en realizar una suma cuadrática:

Mínimos Cuadrados Ordinarios
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• ¿Por qué se elevan los 

errores al cuadrado?

Minimizando la distancia cuadrática (MCO)

Mínimos Cuadrados Ordinarios

• FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 32, Figure 2.3

• ¿De dónde vienen 

estos cuadrados?
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• (Y) es el peso en 

libras y (X) la estatura 

en pulgadas.

• Encuentra el valor de 

los estimadores.

• Grafica la regresión.

• Calcula el Y estimado, 

los errores y la suma 

de los errores al 

cuadrado utilizando la 

información de la 

tabla.

Mínimos Cuadrados Ordinarios

• FUENTE: Anderson (2008), Estadística 

para Economía y Administración, P 553.

Peso (Y) Estatura (X)

132 68

108 64

102 62

115 65

128 66
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1. Modelo de regresión lineal

1.3 Clásico

• Los estimadores fueron calculados por (MCO) a 

partir de una “muestra”.

• El modelo de regresión se puede utilizar para 

obtener conclusiones de toda la “población”.

• Se realizarán supuestos sobre la forma en como 

se genera las variables independientes (X) y el 

término del error (u).

• Estos supuestos fueron empleados por primera 

vez por Gauss en 1821 y desde ese entonces el 

modelo se considera un “clásico”.

Modelo clásico

• FUENTE: http://es.wikipedia.org/wiki/Arist%C3%B3teles
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Supuesto 1: Modelo de regresión lineal

• El modelo de regresión es lineal en los 

parámetros.

Supuesto 2: Independencia entre las variables 

independientes y el término del error

Modelo clásico

( ) 0,cov =ii uX

iii uXY ++= 21 
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n
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iXu

• Las variables independientes se encuentran 

“predeterminadas”.

• No existe “covarianza” entre variables 

observadas y variables no observadas.

• No se presenta “sesgo de selección” (distancia 

al tablero y rendimiento).

• No tenemos “endogeneidad”.

• El cumplimiento de este supuesto permite la 

estimación de los betas por el “Método 

Generalizado de Momentos”.

• En la práctica el cumplimiento de este supuesto 

permite desarrollar ejercicios de “evaluación de 

impacto” (grupo de control y tratamiento).
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Grupo de control y tratamiento (los efectos de Transmi)

Modelo Clásico

• FUENTE: Moreno (2005), Los efectos de Transmilenio en el crimen de la avenida Caracas y sus 

vecindades, Grafico 1, P11

• FUENTE: Gujarati (2010), Econometría, P 78, Figura 3.10 (*)

( ) 0,cov =ii uX



16

0
1

=
=



i

n

i

iXu


=











−−=

n

i

ii XYLMin
1

2

21
,

:
21




( )
=




=−








−−=



 n

i

iii XXY
L

1

21

2

02 



( )
=



=







−−−

n

i

iii XXY
1

21 02 

• Bajo el supuesto de independencia.

Supuesto 3: Errores estacionarios

Modelo clásico

• FUENTE: https://estrategiastrading.com/series-estacionarias/

• ¿Cómo se comporta la media y la varianza en cada serie?
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Supuesto 3.1: Valor Esperado del error es cero

• La media del error es constante e igual a cero.

Supuesto 3.2: Errores homoscedásticos

• La varianza de los errores es constante.

Modelo clásico

( ) 2var =iu

( ) 0=iuE 0
1

=
=

n

i

iu
• Realiza la suma de los 

errores para el ejemplo 

del peso y la  estatura.

• FUENTE: Gujarati (2010), Econometría, P 63, Figura 3.3

( ) 0=iuE ( ) 2var =iu
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• FUENTE: Wooldridge (2010), Introducción a la Econometría, P 55, Figura 2.9

( ) 2var iiu =

Supuesto 4: No auto correlación de los errores

• No existe algún tipo de relación entre las 

variables no consideradas en el modelo.

Supuesto 5: El número de observaciones debe ser 

mayor al número de estimadores

• No existe multicolinealidad perfecta.

Modelo clásico

( ) 0,cov =ji uu

kn 
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• FUENTE: Gujarati (2010), Econometría, P 67, Figura 3.6

( ) 0,cov =ji uu

• ¿Cuál de las 

graficas cumple el 

supuesto de no 

autocorrelación?

1. Modelo de regresión lineal

1.4 Propiedades de los estimadores
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Propiedades de los estimadores 

Cuando se cumplen los supuestos del modelo los 

estimadores por MCO: 

• Son “insesgados” porque en promedio los 

estimadores representan los verdaderos valores 

poblaciones (sin importar el tamaño de la 

muestra). Esto se cumple debido al supuesto 3.

• Son “lineales” en el sentido que sus fórmulas son 

combinaciones lineales de variables aleatorias.

• Son los “mejores” entre todos los estimadores 

lineales dado que tienen la menor varianza.

Propiedades de los estimadores

• FUENTE: Gujarati (2010), Econometría, P 827, Figura A.9

Propiedades de los estimadores
2

var 















−=







 

 EE

• ¿Cuál estimador es 

insesgado?

• ¿Cuál estimador tiene 

mínima varianza?

 =






 

E



21

• Cuando se cumplen los supuestos del modelo el 

estimador por MCO se conoce por el nombre 

“MELI” es decir el “Mejor Estimador 

Linealmente Insesgado”.

• Cuando la muestra es muy grande el estimador 

no tienen sesgo y su varianza es cero por lo cual 

es “consistente”.

• La consistencia permite utilizar los estimadores 

porque estos convergen en probabilidad a sus 

contrapartes poblacionales.

• El “teorema de Gauss Markov” garantiza que los 

estimadores por MCO sean eficientes.

Propiedades de los estimadores

• FUENTE: Gujarati (2010), Econometría, P 829, Figura A.11

Propiedades de los estimadores
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Un ejemplo de la propiedad de “consistencia” se 

puede aplicar a la publicación de los boletines 

electorales (referendo Colombia 2016, Si = 1):

• N = 1.300.734 (15,19%). Promedio = 0,5111

• N = 3.228.870 (31,23%). Promedio = 0,5027

• N = 5.772.382 (50,13%). Promedio = 0,5009

• N = 8.421.244 (68,85%). Promedio = 0,5005

• N = 10.470.544 (83,08%). Promedio = 0,5000

• N = 11.598.295 (90,66%). Promedio = 0,4989

• N = 12.808.858 (99,98%). Promedio = 0,4978

Propiedades de los estimadores

• FUENTE: www.plebiscito.registraduria.gov.co

1. Modelo de regresión lineal

1.5 Precisión de los estimadores
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Precisión de los estimadores por MCO

• En una población se pueden obtener diferentes 

muestras y como consecuencia estimadores 

distintos (edad de estudiantes).

¿Qué tan precisos son los estimadores utilizados?

¿Cuál es el grado de variabilidad de los estimadores 

al emplear muestras diferentes?

• Para responder estas preguntas es necesario 

calcular los errores estándar (EE) de los 

estimadores.

Precisión de los estimadores

Precisión de los estimadores por MCO

• Cuando se cumple el “supuesto 3” del modelo la 

varianza de los errores estimados es:

• Este parámetro es insesgado cuando:
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Precisión de los estimadores
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Precisión de los estimadores por MCO

• (  ) es el error estándar de la regresión (EER).

• “EER” también se puede interpretar como la 

“desviación” estándar de la regresión.

• Entre menor sea “EER” más alta es la precisión 

de la regresión.
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Precisión de los estimadores

Precisión de los estimadores por MCO
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Precisión de los estimadores
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• FUENTE: Brooks (2014), Introductory Econometrics for Finance, P 95, Figure 3.7

La pendiente y datos cercanos de la media

Precisión de los estimadores

• FUENTE: Brooks (2014), Introductory Econometrics for Finance, P 96, Figure 3.8

La pendiente y datos alejados de la media

Precisión de los estimadores
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• FUENTE: Brooks (2014), Introductory Econometrics for Finance, P 96, Figure 3.9

El intercepto y datos con suma X^2 grande

Precisión de los estimadores

• FUENTE: Brooks (2014), Introductory Econometrics for Finance, P 97, Figure 3.10

El intercepto y datos con suma X^2 pequeña

Precisión de los estimadores
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1. Modelo de regresión lineal

1.6 Precisión del modelo

Suma Total de Cuadrados (SCT)    

Precisión del modelo

Y

( )2 −= YYSCT i

• FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 29, Figure 2.1 (adaptada con colores).



28

Suma Explicada de Cuadrados (SCE)    

Precisión del modelo

Y

2

 
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

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YYSCE i

• FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 29, Figure 2.1 (adaptada con colores).

Línea de regresión

Suma de Residuos al Cuadrado (SCR)    

Precisión del modelo

• FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 29, Figure 2.1 (adaptada con colores).
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Medidas de bondad de ajuste (R cuadrado)

• Las variaciones de la muestra se generan de dos 

fuentes, la “suma explicada de cuadrados” (SCE) 

y la “suma de los residuos al cuadrado” (SCR): 

Precisión del modelo
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Medidas de bondad de ajuste (R cuadrado)

Precisión del modelo

SCRSCESCT +=

SCT

SCR

SCT

SCE
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Medidas de bondad de ajuste (R cuadrado)

• El R cuadrado mide el porcentaje de variación en 

“Y” explicada por las variaciones en “X”.

• También se conoce como el “coeficiente de 

determinación” (no confundir con el coeficiente 

de correlación).

• La minimización de la suma de los errores al 

cuadrado implica la maximización del R cuadrado.

Precisión del modelo
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Precisión del modelo

• FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 109, Figure 3.1 (editada)
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Precisión del modelo

• FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 109, Figure 3.2 (editada)
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• Encuentra el error 

estándar de la 

regresión, los 

errores estándar 

de los 

estimadores, la 

SCT, la SCE, la SCR  

y el R cuadrado. 

Precisión del modelo

• FUENTE: Anderson (2008), Estadística 

para Economía y Administración, P 553.

Peso (Y) Estatura (X)

132 68

108 64

102 62

115 65

128 66

2. Inferencia Estadística

2.1 Pruebas de Hipótesis
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• ¿Los estimadores obtenidos por MCO reflejan el 

verdadero valor  de los parámetros 

poblacionales?

• Por ejemplo, si beta es igual 0,2; ¿El beta 

poblacional en promedio también es igual a 0,2?

• Las pruebas de hipótesis evalúan estas 

afirmaciones asumiendo una “distribución de 

probabilidad” para los residuos.

• El modelo de regresión es “normal” porque se 

asume que los residuos siguen esa distribución.

Pruebas de Hipótesis

Pruebas de Hipótesis

¿Por qué se asume la normalidad en los errores?

• Al aumentar el tamaño de muestra y sin importar 

el tipo de distribución que asuman las variables 

incluidas en el error estas siguen la normal.

• Lo anterior se cumple inclusive si el tamaño de 

muestra no es grande o las variables no son 

independientes (en algunos casos).

• Permite realizar pruebas de hipótesis con otras 

distribuciones (t-student, chi-cuadrado y F).

• Es importante realizar pruebas de hipótesis 

verificando la distribución normal de los errores.
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• Cuando los errores siguen la distribución normal 

entonces los estimadores por MCO también 

siguen esta distribución.

• Bajo este supuesto los estimadores por MCO son 

los Mejores Estimadores Insesgados “MEI” (entre 

los estimadores lineales y no lineales).

• Este resultado es más potente que el “Teorema 

de Gauss Markov”.

Pruebas de Hipótesis

( )2,0~ Nui

• Cuando los errores siguen la distribución normal 

entonces los estimadores por MCO también 

siguen esta distribución:

• Las variable normal estándar se puede construir 

a partir de estos estimadores al restar la media y 

dividir por la desviación estándar:

Pruebas de Hipótesis












2
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
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

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• Dado que en la práctica es difícil encontrar la 

varianza poblacional se utiliza la “distribución 

t”, asumiendo que el error estándar es un buen 

estimador de la desviación estándar:

• Las pruebas de hipótesis se pueden realizar bajo 

el enfoque del “test de significancia” o 

“intervalos de confianza”.

2

1

11 ~ −












−
nt

ee 


2

2

22 ~ −












−
nt

ee 



Pruebas de Hipótesis

Pruebas de hipótesis

• Hipótesis Nula:

• Hipótesis Alternativa:

• En este caso se utiliza una prueba de dos colas 

dado que se tienen dos posibilidades:

Pruebas de Hipótesis

2,0:0 =H

2,0:1 H

2,0 2,0
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Regiones de rechazo al 5% con dos colas

Pruebas de Hipótesis

• FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 57, Figure 2.13 (editada)

2,0:1 H

Pruebas de hipótesis

• Hipótesis Nula:

• Hipótesis Alternativa:

• En este caso se utiliza una prueba de una cola 

dado que se tiene una posibilidad.

Pruebas de Hipótesis

2,0:0 =H

2,0:1 H
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Región de rechazo al 5% con una cola

Pruebas de Hipótesis

• FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 57, Figure 2.15 (editada)

2,0:1 H

Pruebas de hipótesis

• Hipótesis Nula:

• Hipótesis Alternativa:

• En este caso se utiliza una prueba de una cola 

dado que se tiene una posibilidad.

Pruebas de Hipótesis

2,0:0 =H

2,0:1 H
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Región de rechazo al 5% con una cola

Pruebas de Hipótesis

• FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 57, Figure 2.13 (editada)

2,0:1 H

2. Inferencia Estadística

2.2 Test de significancia e 

Intervalos de Confianza
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Test de significancia (pasos)

1. Estime los estimadores y sus errores estándar. 

2. Calcule el valor del estadístico (observado).

3. Utilice una tabla de distribución del estadístico.

4. Seleccione un nivel de significancia.

5. Determine las regiones de rechazo.

6. Encuentre el valor crítico del estadístico. 

7. Si el valor del estadístico es mayor o inferior a 

los valores críticos del estadístico rechace la 

hipótesis nula en caso contrario no rechace.

Test de significancia e 

Intervalos de Confianza

• FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 56, Box 2.5

Intervalos de confianza (pasos)

1. Estime los estimadores y sus errores estándar. 

2. Seleccione un nivel de significancia.

3. Utilice una tabla de distribución del estadístico.

4. Encuentre el valor crítico del estadístico.

5. Determine el intervalo de confianza.

6. Si el valor del estimador bajo la hipótesis nula se 

encuentra por fuera del intervalo rechace la 

hipótesis nula en caso contrario no rechace.

Test de significancia e 

Intervalos de Confianza

• FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 60, Box 2.6
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Equivalencia entre las pruebas

• Las conclusiones obtenidas por la prueba de 

significancia y los intervalos de confianza son 

equivalentes.

• Bajo el test de significancia la hipótesis nula no 

se rechaza si el estadístico se encuentra dentro 

de la región de no rechazo:

Test de significancia e 

Intervalos de Confianza

crtcrt t

ee

t 









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−
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

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
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






−



2222  eeteet crtcrt









+








−



22222  eeteet crtcrt

• Esta última expresión es el área de no rechazo de la 

hipótesis nula utilizando un intervalo de confianza.

22222
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2. Inferencia Estadística

2.3 Ejemplos

Dada la siguiente regresión (Brooks 2008, P 60):

• Hipótesis Nula:

• Hipótesis alternativa:

• Nivel de significancia = 10%

• Grados de libertad = 20

Ejemplo 1

( ) ( )
ii XY

2561,038,14

5091,03,20 += 22=n

0: 20 =H

0: 21 H

• ¿Es una prueba de una cola o dos colas?, ¿Cuánto es el “t crítico”?
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X

Ejemplo 1

Y

0: 21 H

0: 20 =H

0: 21 H

ii XY 21  +=

Ejemplo 1

988,1
2561,0

05091,0

2

22 =
−

=










−
=









ee

tobs

Test de significancia

• Rechaza la hipótesis nula con un nivel de 

significancia del 10% (1,988 es superior a 1,725).
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• FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 57, Figure 2.13 (editada)

Valores críticos y regiones de rechazo con dos colas 

(distribución t)

Ejemplo 1

t725,1725,1− 1,98

%5 %5
%90

Ejemplo 1

086,2%5,20 =t • No rechaza la hipótesis nula

845,2%1,20 =t • No rechaza la hipótesis nula

725,1%10,20 =t • Rechaza la hipótesis nula
(la variable es estadísticamente significativa)

988,1
2561,0

05091,0

2

22 =
−

=










−
=









ee

tobs
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Intervalo de confianza

Ejemplo 1









+








−



22222  eeteet crtcrt

( )( ) ( )( )2561,0725,15091,02561,0725,15091,0 2 +− 

9508,006733,0 2  

• Rechaza la hipótesis nula con un nivel de 

significancia del 10% (       no se encuentra 

dentro de ese intervalo.)

02 =

Dada la siguiente regresión (Gujarati 2010, P 79):

• X = nivel de escolaridad, Y = salario.

• Hipótesis Nula:

• Hipótesis alternativa:

• Nivel de significancia = 5%

• Grados de libertad = 11

Ejemplo 2

( ) ( )
ii XY

069,08746,0

7241,00144,0 +−= 13=n

6,0: 2

0 =H

6,0: 2

1 H



45

Valores críticos y regiones de rechazo con dos colas

Prueba Chi-cuadrado

Ejemplo 2

• FUENTE: Gujarati (2010), Econometría, P 112, Figura 5.1

( )











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−=
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2

2
2 2
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
 nobs

2

2/,2

2

 − nCRT

8811,02 =




• Calcula el estadístico 

observado.

• ¿Se rechaza la 

hipótesis nula?

Intervalo de confianza

Ejemplo 2
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2

22
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






nn

nn

54,24422,0 2 
• No rechaza la hipótesis nula con un nivel de 

significancia del 5% (           se encuentra dentro 

de ese intervalo.)
6,02 =

( ) ( ) 

















8157,3

8811,0
11

92,21

8811,0
11 2
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2. Inferencia Estadística

2.4 Nivel de significancia

• No rechazar una hipótesis nula no implica 

aceptar la hipótesis nula porque en realidad 

cualquier otra hipótesis nula pudo haber sido 

aceptada (ejemplo de veredicto en juzgados).

• La hipótesis nula más utilizada en el análisis de 

regresión es                   la cual busca establecer 

si existe una relación lineal entre la variable 

dependiente (Y) y la variable independiente (X).

• Cuando los grados de libertad con superiores a 

20, el nivel de significancia es del 5% y el 

estadístico “t” es superior a “2” rechace la 

hipótesis nula (regla del 2).

Nivel de significancia

( )0: 20 =H
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• La formulación de la hipótesis nula también 

depende del marco teórico existente (Gujarati 

2010, P 121).

• El “valor p” encuentra el nivel de 

significancia más bajo para rechazar la 

hipótesis nula.

• A medida que se incrementa el estadístico 

observado se reduce el valor p y se rechaza 

la hipótesis nula con mayor confianza 

(Gujarati 2010, P 122).

• Los programas estadísticos muestran el valor 

del estadístico y el valor p.

Nivel de significancia

• FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 57, Figure 2.13 (editada)

Valores críticos y regiones de rechazo con dos colas 

(distribución t)

Nivel de significancia

t725,1725,1− 1,98

%5 %5
%90
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• FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 57, Figure 2.13 (editada)

Nivel de significancia

t725,1725,1− 1,98

%5 %5
%90

Rechazo de la hipótesis nula

• En esta situación:

Nivel de significancia

725,1%10,20 == ttCRT

988,1

2

22 =
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


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



−
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


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ee

tobs

%5
2
=



%08,3ValorP =

• ¿Se rechaza la hipótesis nula?, ¿Por qué?
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Clasificando los errores y aciertos al realizar pruebas de hipótesis

Nivel de significancia

• FUENTE: Brooks (2008), Introductory Econometrics for Finance, P 64, Table 2.3

Error Tipo I y Error Tipo II

Nivel de significancia

• FUENTE: Ellis (2010), The essential guide to effect sizes, P 50, Figure 3.1
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• Existe una disyuntiva entre los tipos de errores 

(es más grave el error tipo I).

• En la práctica se fija un valor para el error 

tipo I y se busca maximizar la potencia de la 

prueba (      ).

• La única forma de reducir los dos tipos de 

errores en forma simultanea es utilizar una 

muestra más grande o con mayor varianza 

(Brooks 2008, P 65).

Nivel de significancia

−1

3. Análisis de varianza (ANOVA)
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Medidas de bondad de ajuste (R cuadrado)

• Las variaciones de la muestra se generan de dos 

fuentes, la “suma explicada de cuadrados” (SCE) 

y la “suma de los residuos al cuadrado” (SCR): 

Análisis de varianza (ANOVA)

SCRSCESCT +=

( )
22

2

 
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Tabla ANOVA para regresión simple

Análisis de varianza (ANOVA)

• FUENTE: Gujarati (2010), Econometría, P 125, Tabla 5.3

• SC = Suma de Cuadrados.

• GL = Grados de Libertad.

• SCP = Suma de Cuadrados Promedio (SC dividido GL).

Fuente de variación SC GL SCP

Debido a la regresión (SCE) 1

Debido a los residuos (SCR) n-2

Suma Total de cuadrados (SCT) n-1

2

 
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
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
−



YYi

• Encuentra la tabla ANOVA para el ejemplo del peso y la estatura.
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Tabla ANOVA para regresión simple

Análisis de varianza (ANOVA)

Fuente de variación SC GL SCP

Debido a la regresión (SCE) 605 1 605

Debido a los residuos (SCR) 51 3 17

Suma Total de cuadrados (SCT) 656 4

Prueba F para regresión simple

Análisis de varianza (ANOVA)

2

1

2

1

2 Varianza GL

2 Varianza
1 Varianza GL

1 Varianza
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m
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obs
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• Encuentra el valor del “F obs” para el ejemplo del peso y la estatura.

1:
2

2

0 
SCR

SCEH



1:

2

2

1 
SCR

SCEH



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56,35
17

605
==obsF

( )
( )( )

56,35
)12)(9222,01(

)25)(9222,0(

11 2

2

=
−−

−
=

−−

−
=

kR

knR
Fobs

Fuente de variación SC GL SCP

Debido a la regresión (SCE) 605 1 605

Debido a los residuos (SCR) 51 3 17

Suma Total de cuadrados (SCT) 656 4

• SCE es 35 veces mayor a la SCR (descontando por 

GL), por tanto el modelo tiene alto poder explicativo 

(SCE pesa 92% en de la variabilidad de Y). 

Valor crítico y región de rechazo con cola derecha 

Distribución F

• FUENTE: Gujarati (2010), Econometría, P 880, Tabla D.3 (editada)

12,10 11,34

 ,3,1,2,1 FFF nCRT == −
• ¿Se rechaza la hipótesis nula?

• ¿El modelo tiene poder explicativo?

1:
2

2

0 
SCR

SCEH



1:

2

2

1 
SCR

SCEH




35,5
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